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Abstract-The research described in this paper uses a genetic 
algorithm (GA) to evolve wavelet and scaling coefficients for 
transforms that outperform discrete wavelet transforms (DWTs) 
under conditions subject to quantization. Compression and 
reconstruction transform pairs evolved against a representative 
training image reduce mean squared error (MSE) by more than 
22% (1.126 dB) when subsequently applied to test images at a 
single level of decomposition, while evolved three-level 
multiresolution analysis (MRA) transforms average more than 
11% (0.50 dB) MSE reduction when applied to test images in 
comparison to the Daubechies-4 (D4) wavelet, without increasing 
the size of the compressed file. 
 

I. INTRODUCTION 
 
Modern digital image compression and reconstruction 
systems, such as the JPEG2000 standard [12], use wavelets 
[3]. DWTs may be described by four sets of floating-point 
coefficients: h1 (Lo_D) and g1 (Hi_D) are the wavelet and 
scaling numbers for the (forward) discrete wavelet 
(decomposition) transform (DWT), while h2 (Lo_R) and g2 
(Hi_R) define the wavelet and scaling numbers for the inverse 
(reconstruction) transform (DWT-1). Fig. 1 lists these 
coefficients for the D4 DWT. 
 
 

h1 = {-0.1294, 0.2241, 0.8365, 0.4830} 
g1 = {-0.4830, 0.8365, -0.2241, -0.1294} 
h2 = {0.4830, 0.8365, 0.2241, -0.1294} 

g2 = {-0.1294, -0.2241, 0.8365, -0.4830} 
 

Fig. 1. D4 Wavelet Transform Coefficients. 
 
 
Quantization (the process of representing intensity values 

using a smaller number of bits) allows images to be more 
easily compressed. Fig. 2 illustrates the process of 
compressing, quantizing, encoding, decoding, dequantizing, 
and reconstructing an image. Quantization is often the most 
significant source of distortion in digital images. 

Dequantization step Q-1(q) produces an image γ’ that differs 
from the original image γ according to a distortion measure ρ, 
which in general may be computed as a linear combination of 
the MSE for each pixel. 

The distortion present in images reconstructed by 
wavelets increases in proportion to quantization. Fig. 3 shows 
the “zelda.bmp” image after it was compressed, quantized 
with a quantization step of 64:1, encoded, decoded, 
dequantized, and reconstructed by a D4 DWT. For medical, 
scientific, and military applications requiring high-fidelity 
imagery, such distortion may be unacceptable. 

 
 

 
 

Fig. 2. A Discrete Wavelet Transform Filter with Quantization, Encoding, 
Decoding, and Dequantization. 

 
 

II. PREVIOUS RESULTS 
 
A series of projects preceded the research described in this 
paper. The first of these [6] investigated whether a GA could 
be used to evolve coefficients describing an inverse transform 
capable of reducing the MSE in reconstructed one-
dimensional signals previously compressed by a DWT and 
subjected to quantization error. Results were promising, with 
error reductions exceeding 91% for sinusoidal signals. The 



second project [7] demonstrated that this approach could also 
be successfully applied to images: a GA evolved inverse 
transforms capable of reducing MSE by as much as 10.7% in 
comparison to the selected wavelet. The third project [1] 
extended this work by simultaneously evolving coefficients 
describing matched forward and inverse transform pairs. The 
resulting transforms were capable of more than 20% MSE 
reduction in comparison with the D4 transform, while 
maintaining a compressed file size less than or equal to the 
size of the file compressed by the D4 transform. For each of 
these projects, the GA seeded the initial population with 
randomly mutated copies of a selected wavelet; the evolved 
transforms thus had identical structure to the selected wavelet, 
but different wavelet and scaling numbers. Note that 
coefficients are evolved offline (i.e., not in real time), but are 
subsequently used in real time to compress and reconstruct 
signals and images not explicitly anticipated by the training 
population – i.e., evolved coefficients directly replace D4 
transform coefficients and are not tailored to specific test 
images. 

  
 

 
 

Fig..3. “Zelda.bmp” image compressed and reconstructed using the D4 
wavelet with a quantization step = 64. 

 
 

III. EVOLVED ONE-LEVEL TRANSFORMS 
 
As these previous studies progressed, it became clear that the 
use of more powerful computer resources would be necessary 
in order to begin to approach an upper bound on evolved 
transform performance. The first important goal of this study 
was to effectively utilize supercomputers to evolve real-valued 
coefficients describing matched forward and inverse transform 
pairs capable of outperforming wavelets for image 
compression and reconstruction tasks subject to quantization 

error. The customized wavelet modeling software used for the 
first three projects was abandoned in favor of Matlab’s 
Wavelet Toolbox, while the hand-crafted GA was 
reimplemented using Matlab’s Genetic Algorithm and Direct 
Search Toolbox. Both tools were integrated into the Matlab 
Distributed Computing Engine for execution on Arctic 
Regional Supercomputer Center (ARSC) platforms. 
Preliminary tests revealed that Information Entropy (IE) 
provided a consistently accurate prediction of the size of the 
compressed file; replacing a time-consuming file size 
calculation algorithm with an IE measure further reduced the 
computational cost of fitness evaluation. 

Fig. 4 tabulates the results of the one supercomputer run, 
which used the 256-by-256 pixel “zelda.bmp” training image. 
These results show a nearly 40% MSE (2.203 dB) reduction 
for the training image, and an average MSE reduction of 
nearly 23% (1.126 dB) on test images. In addition, according 
to the IE measure, compressed FS was less than or equal to the 
size of the D4 wavelet-compressed FS for every test image. 

  
 

 
 

Fig. 4.  Transforms trained on “zelda.bmp” significantly outperform the D4 
wavelet. 

 
 

Figs. 5 and 6 emphasize the amount of error reduction 
actually achieved by the evolved transform: Fig. 5 shows the 
difference between the original image and the D4 wavelet-
reconstructed image, while Fig. 6 shows the difference 
between the original image and the evolved transform-
reconstructed image. To aid visualization, differences less 
than 15 were set to zero. 

Figs. 7 and 8 present the results of two additional runs of 
our improved evolutionary system. Transforms trained on a 
256-by-256 pixel “fruits.bmp” (Fig. 7) show increased 
average percentage MSE reduction (1.185 dB) and reduced 
variance when tested against other images, with equivalent IE. 
These transforms appear to generalize across the entire test set 
more consistently than transforms trained on “zelda.bmp”. 

 Transforms trained on an “airplane.bmp” image of 
equivalent size exhibit much better error reduction (averaging 
2.120 dB) and generalize well across the image test set (Fig. 
8); however, higher levels of IE indicate that the evolved 

image IE % Size SE % SE imprv
airplane 95.34 72 28
baboon 94.38 93.2 6.8
barb 97.85 77.12 22.88
boat 98.03 79.28 20.72
couple 96.45 81.61 18.39
fruits 98.06 96.38 3.62
goldhill 98.82 72.91 27.09
lenna 99.11 70.26 29.74
park 97.04 81.64 18.36
peppers 99.61 68.79 31.21
susie 97.57 72.55 27.45
zelda 100 60.22 39.78

97.68833 77.16333 22.83667



transform could produce larger compressed files than the D4 
wavelet. These results corroborate previously reported data [1] 
indicating the existence of a nearly linear Pareto optimal front 
[5] describing the tradeoff between file size and MSE in the 
solution space of evolved transforms. 

 

 
Fig. 5. Differences between the original image and the D4 wavelet-

reconstructed image are easily observed. 
 
 

 
Fig. 6. Differences between the original image and the evolved transform-

reconstructed image are much less apparent. 
 
 

 

 
 

Fig. 7.  Transforms trained on “fruits.bmp” also outperform the D4 wavelet 
for quantization = 64. 

 
 

 
 

Fig. 8. Transforms trained on “airplane.bmp” also outperform the D4 wavelet 
for quantization = 64. 

 
 

IV. EVOLVED MRA TRANSFORMS: ONE  SET OF 
COEFFICIENTS FOR ALL LEVELS 

 
The goal of any image compression and reconstruction system 
is to simultaneously minimize two parameters: 
 
1. The number of bits needed to represent the compressed, 

quantized, and encoded image, i.e., the file size (FS). 
2. The average distortion observed in reconstructed images, 

i.e., the MSE. 
 

The results summarized in the previous section achieve 
each of these goals.  However, in a typical image compression 
and reconstruction application, a single set of coefficients 
defining a particular wavelet is used at every level of a MRA 
transform. Each application of the forward transform achieves 
additional compression not possible with one-level transforms. 
For this reason, the next important task of the research 
described in this paper was to determine whether a GA [4] 
could evolve coefficient sets representing non-wavelet MRA 
transforms capable of outperforming MRA DWTs under 

image IE % Size SE % SE imprv
airplane 99.98 57.86 42.14
baboon 105.88 68.6 31.4
barb 105.56 66.09 33.91
boat 105.39 61.73 38.27
couple 105.35 62.55 37.45
fruits 105.24 64.61 35.39
goldhill 105.58 61.93 38.07
lenna 104.47 56.6 43.4
park 104.87 65.17 34.83
peppers 105.72 56.49 43.51
susie 104.12 57.4 42.6
zelda 106.19 57.48 42.52

104.8625 61.37583 38.62417

image IE % Size SE % SE imprv
airplane 96.26 72.7 27.3
baboon 98.8 85.07 14.93
barb 100.47 77.72 22.28
boat 99.06 77.34 22.66
couple 100 77.67 22.33
fruits 100 74.82 25.18
goldhill 100.97 73.27 26.73
lenna 100.05 76.75 23.25
park 100.76 86.72 13.28
peppers 101.05 69.02 30.98
susie 100.02 74.45 25.55
zelda 101.51 67.95 32.05

99.9125 76.12333 23.87667



conditions subject to quantization error. The following 
parameters characterize the GA developed to achieve this 
goal: 

 
1. The maximum number of generations, G. 
2. The size of the evolving population, M. 
3. The number of multiresolution levels, MR. 
4. The image(s) used to train the GA. 

 
Typical values used during this study were G = 500, M = 
2000, and MR = 3. IE was again used to provide a fast and 
accurate estimate of FS during fitness evaluation.  

A previous investigation [8] established the overall 
feasibility of extending the GA-based approach described 
above to evolve MRA transforms described by a single set of 
coefficients. Unfortunately, these studies produced transforms 
whose MSE reductions averaged only 3.1% MSE reduction. 
Therefore, the second important goal addressed by the 
research described in this paper was to determine whether 
ARSC supercomputers could be used to evolve a single set of 
coefficients for use at every level of a MRA transform capable 
of significantly improving upon previous results. 

Training with the 512-by-512 pixel “zelda.bmp” image 
and seeding the population with randomly mutated copies of 
the D4 wavelet, a GA evolved a single set of g1, h1, g2, and 
h2 coefficients that achieved a 10.2% MSE reduction while 
maintaining an average IE approximately equal to that of the 
D4. Fig. 9 shows the final coefficients evolved during this run, 
and lists the percentage difference between each evolved 

coefficient and the corresponding coefficient from the original 
D4 wavelet. Note that the greatest percentage change has 
occurred in the high-frequency coefficients of the 
reconstruction transform. 

These coefficients were used at every level of a three-
level MRA transform tested against other 512-by-512 pixel 
images. The results of these tests (Fig. 10) show an average 
MSE reduction of over 7.6%. Note that this reduction is more 
than 2.4 times the reduction of the best transform produced 
prior to utilizing the supercomputer. 

To demonstrate the general applicability of the approach, 
a second run used the “fruits.bmp” image to train a single set 
of coefficients used at every level of a three-level MRA 
transform. Test results (Fig. 11) show an average MSE 
reduction of over 7.6% when tested on other 512-by-512 pixel 
images, while maintaining IE equal to that of the D4 wavelet. 
 

V. EVOLVED MRA TRANSFORMS: A DIFFERENT SET OF 
COEFFICIENTS FOR EACH MRA LEVEL 

 
Previous work [8] also demonstrated that the GA-based 
methodology could be used to evolve a different set of 
coefficients for each level of a MRA transform; for example, a 
three-level evolved MRA transform derived from the D4 
wavelet consists of 48 real-valued coefficients (i.e., 16 
coefficients defining the g1, h1, g2, and h2 coefficients at each 
MRA level). The resulting transforms outperformed both 
wavelets and evolved transforms described by a single set of 
coefficients.

 
 

 

 
Coefficient Set Values (Change from D4) 
h1 (Lo_D)  0.1275, 0.2276, 0.8449, 0.4665 (-1.47%, +1.56%, +1.00%, -3.42%) 
g1 (Hi_D)  0.4898, 0.8467, -0.2292, -0.1290 (+1.41%, +1.22%, +2.28%, -0.31%) 
h2 (Lo_R) 0.4815, 0.8171, 0.2277, -0.1095 (-0.31%, -2.32%, +1.61%, -15.39%) 
g2 (Hi_R)  0.1585, -0.1194, 0.7447, -0.3656 (+22.49%, -46.72%, -10.97%, -24.31%) 

 
Fig. 9.  Evolved Coefficients and % Change Relative to the D4 Wavelet: One Set of Coefficients Used at Every Level of a Three-level MRA Transform. 

 
 

 
Image  IE Improvement (MSE) 

 airplane.bmp 100.00% 10.49% 
 baboon.bmp 99.95% 11.55% 
 barb.bmp 99.95% 14.82% 
 boat.bmp 100.08% 6.41% 
 couple.bmp 99.99% 11.66% 
 fruits.bmp 99.95% 5.79% 
 goldhill.bmp 100.06% 11.76% 
 lenna.bmp 99.94% 11.51% 
 park.bmp 100.03% 9.87% 
 peppers.bmp 100.08% 13.50% 
 susie.bmp 99.84% 6.34% 
 zelda.bmp 100.12% 12.21% 
 ---------------------------------------------------------- 
 Averages: 100.00% 7.61% 
 

Fig. 10. A Three-level Transform Using a Single Set of Coefficients at 
Every Level Generalizes Well Against the Test Set of Images. 

 
 

 Image  IE Improvement (MSE) 
 airplane.bmp 100.00% 7.86% 
 baboon.bmp 99.95% 9.72% 
 barb.bmp 99.95% 7.23% 
 boat.bmp 100.08% 7.82% 
 couple.bmp 99.99% 8.19% 
 fruits.bmp 99.95% 6.10% 
 goldhill.bmp 100.06% 8.01% 
 lenna.bmp 99.94% 7.14% 
 park.bmp 100.03% 7.40% 
 peppers.bmp 100.08% 6.56% 
 susie.bmp 99.84% 7.22% 
 zelda.bmp 100.12% 8.02% 
 ------------------------------------------------------------- 
 Averages: 100.00% 7.61% 

 
Fig. 11. A Three-level Transform Using a Single Set of Coefficients at 

Every Level and Trained on “fruits.bmp” Also Generalize Well Against the 
Test Set. 

 



The third important goal of this research was to 
determine the amount of additional MSE reduction that 
could be achieved by using ARSC supercomputers to 
evolve different sets of coefficients for each level of an 
MRA transform. Training with the 512-by-512 pixel 
“zelda.bmp” image and seeding each MRA level of each 
individual in the population with randomly mutated copies 
of the D4 wavelet, our enhanced GA evolved a three-level 
MRA transform that achieved a 12.21% MSE reduction. 
Fig. 12 shows the evolved coefficients and the change 
relative to the D4 wavelet’s coefficients. Note that the most 
significant percentage changes occurred in the high-pass 
reconstruction transform (g2). In addition, significant 
change occurred in the fourth coefficient of each low-pass 
reconstruction vector (h2). In contrast, changes to the 
remaining h2 coefficients, as well as to the entire h1 and g1 
coefficient sets of the compression transform, were much 
smaller. 

Evolved coefficients were subsequently tested on 
several images (Fig. 13). Note that the evolved transform 
achieved an average MSE reduction of nearly 11% against 
the test set, while maintaining IE approximately equal to 
that of the D4 wavelet. This result nearly doubles the 
average MSE reduction achieved prior to utilizing the 
supercomputer to run large- scale GA tests. To demonstrate 
the general applicability of the approach, a second run used 

the “fruits.bmp” image to train different sets of coefficients 
for each level of a three-level MRA transform. Test results 
(Fig. 14) show an average MSE reduction of nearly 10.4% 
in comparison to the D4 when tested on other 512-by-512 
pixel images, while maintaining equivalent IE. These results 
suggest that coefficients trained on representative images 
generalize well for compression and reconstruction tasks. 

Transforms trained on 512-by-512 pixel images also 
perform very well when tested against smaller images. Fig. 
15 tabulates the results of applying coefficients evolved on 
the 512-by-512 pixel “fruits.bmp” image to a set of 256-by-
256 test images. Average MSE reduction exceeded 12.9%, 
while maintaining an average IE within 0.03% of the D4 
wavelet’s IE. 

 
 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
 
This paper builds upon previously reported results to 
establish a new methodology for using GAs to evolve 
single-level and MRA transforms that significantly 
outperform wavelets for image compression and 
reconstruction tasks under conditions subject to quantization 
error.  

 

 
 
 Set  MRA Level Values (% Change Relative to D4 Wavelet) 

h1 (Lo_D) 1 -0.1278, 0.2274, 0.8456, 0.4664 (-1.24%, +1.47%, +1.09%, -3.44%) 
 2 -0.1274, 0.2289, 0.8446, 0.4661 (-1.55%, +2.14%, +0.97%, -3.50%) 
 3 -0.1278, 0.2281, 0.8455, 0.4670 (-1.24%, +1.78%, +1.08%, -3.31%) 
g1 (Hi_D) 1 0.4791, 0.8474, -0.2347, -0.1278 (-0.81%, +1.30%, +4.73%, -1.24%) 
 2 -0.4894, 0.8447, -0.2317, -0.1279 (+1.33%, +0.98%, +3.39%, -1.16%) 
 3 -0.4901, 0.8462, -0.2291, -0.1288 (+1.47%, +1.16%, +2.23%, -0.46%) 
h2 (Lo_R) 1 0.4811, 0.8152, 0.2274, -0.1069 (-0.39%, -2.55%, +1.47%, -17.39%) 
 2 0.4805, 0.8159, 0.2279, -0.1093 (-0.52%, -2.46%, +1.70%, -15.53%) 
 3 0.4820, 0.8172, 0.2278, -0.1097 (-0.21%, -2.31%, +1.65%, -15.22%) 
g2 (Hi_R) 1 -0.2008, 0.0274, 0.5960, -0.1472 (+55.18%, -87.78%, -28.75%, -69.52%) 
 2 -0.1618, -0.1105, 0.6870, -0.3201 (+25.04%, -50.69%, -17.87%, -33.73%) 
 3 -0.1572, -0.1495, 0.7861, -0.4033 (+21.48%, -33.29%, -6.03%, -16.50%) 

 
Fig. 12. Different Evolved Coefficients for Each of Three MRA Levels and Percentage Change Relative to the D4 Wavelet.

 
 
 

Image  Original File Size  (pixels)  IE  Improvement (MSE) 
 airplane.bmp 512x512 100.17% 10.49% 
 boat.bmp 512x512 100.31% 11.55% 
 boat.bmp 256x256 100.72% 14.82% 
 baboon.bmp 512x512 100.89% 6.41% 
 baboon.bmp 256x256 100.70% 13.50% 
 couple.bmp 512x512 100.43% 11.66% 
 fruits.bmp 512x512 100.12% 5.79% 
 goldhill.bmp 512x512 100.34% 11.76% 
 lenna.bmp 512x512 100.23% 11.51% 
 park.bmp 512x512 100.47% 9.87% 
 susie.bmp 512x512 100.25% 6.34% 
 zelda.bmp 512x512 100.00% 12.21% 
 ------------------------------------------------------------------------------------------------------------------------------------- 
 Average Performance:  100.39% 10.49% 
 

Fig. 13. Test Results, Three-level MRA Transform, Different Coefficients at Each Level.



Image  IE Improvement (MSE) 
 airplane.bmp 99.98% 12.62% 
 baboon.bmp 100.07% 11.86% 
 barb.bmp 100.04% 2.44% 
 boat.bmp 100.09% 13.01% 
 couple.bmp 99.97% 13.13% 
 fruits.bmp 100.43% 11.66% 
 goldhill.bmp 100.02% 10.90% 
 lenna.bmp 99.90% 11.11% 
 park.bmp 100.00% 11.91% 
 peppers.bmp 100.02% 7.00% 
 susie.bmp 99.84% 8.99% 
 zelda.bmp 100.16% 10.04% 
 ---------------------------------------------------------- 
 Averages: 100.04%  10.39% 
 

Fig. 14. A Three-level Transform Using a Different Coefficients at Each 
Level and Trained on “fruits.bmp” Generalizes Against the Test Set. 

 
 

 Image IE Improvement (MSE) 
 airplane256.bmp 100.02% 16.10% 
 baboon256.bmp 100.07% 14.82% 
 barb256.bmp 100.27% 11.97% 
 boat256.bmp 99.91% 16.65% 
 couple256.bmp 99.97% 13.13% 
 fruits256.bmp 99.93% 0.93% 
 goldhill256.bmp 99.81% 12.53% 
 lenna256.bmp 100.12% 15.97% 
 park256.bmp 100.04% 16.64% 
 peppers256.bmp 99.99% 12.05% 
 susie256.bmp 99.97% 12.28% 
 zelda256.bmp 100.22% 11.93% 
 -------------------------------------------------------- 
 Averages: 100.03% 12.92% 
 
 

Fig. 15. A Three-level MRA Transforms Using a Different Coefficients at 
Each Level and Trained on the 512-by-512 Pixel “fruits.bmp” Image Also 

Perform Very Well When Tested on 256-by-256 Pixel Images.
 
 

 
 

An investigation into the methodology’s potential to 
revolutionize real-world applications currently incorporating 
wavelets, such as the FBI fingerprint compression standard [2] 
and the JPEG2000 image compression standard [12], is 
underway. Parallel research investigating the use of various 
crossover and mutation operators on overall system 
performance ([9], [10]) may be incorporated into the current 
GA to achieve additional performance improvement. Sub-
images containing distinctive energy distributions may also be 
useful in evolving transforms that are capable of highlighting 
those sub-images when they occur in larger scenes. 
Techniques for evolving both the number of coefficients in 
each transform vector, as well as the numerical value of those 
coefficients, may reveal the existence of entirely new 
transforms capable of outperforming any previously defined 
transforms. Finally, the use of alternative evolution-inspired 
paradigms, such as differential evolution [11], may accelerate 
the evolutionary process, evolve consistently better 
transforms, or both. 
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